Download Udemy Paid Courses for Free
Download Udemy Paid Courses for Free. Learn Hacking, Programming, IT & Software, Marketing, Music, Free Online Courses, and more.

Cutting-Edge AI: Deep Reinforcement Learning in Python

0 277

What you’ll learn

  • Understand a cutting-edge implementation of the A2C algorithm (OpenAI Baselines)
  • Understand and implement Evolution Strategies (ES) for AI
  • Understand and implement DDPG (Deep Deterministic Policy Gradient)

Requirements

  • Know the basics of MDPs (Markov Decision Processes) and Reinforcement Learning
  • Helpful to have seen my first two Reinforcement Learning courses
  • Know how to build a convolutional neural network in Tensorflow

Description

Welcome to Cutting-Edge AI!

This is technically Deep Learning in Python part 11 of my deep learning series, and my 3rd reinforcement learning course.

Deep Reinforcement Learning is actually the combination of 2 topics: Reinforcement Learning and Deep Learning (Neural Networks).

While both of these have been around for quite some time, it’s only been recently that Deep Learning has really taken off, and along with it, Reinforcement Learning.

The maturation of deep learning has propelled advances in reinforcement learning, which has been around since the 1980s, although some aspects of it, such as the Bellman equation, have been for much longer.

Recently, these advances have allowed us to showcase just how powerful reinforcement learning can be.

We’ve seen how AlphaZero can master the game of Go using only self-play.

This is just a few years after the original AlphaGo already beat a world champion in Go.

We’ve seen real-world robots learn how to walk, and even recover after being kicked over, despite only being trained using simulation.

Simulation is nice because it doesn’t require actual hardware, which is expensive. If your agent falls down, no real damage is done.

We’ve seen real-world robots learn hand dexterity, which is no small feat.

Walking is one thing, but that involves coarse movements. Hand dexterity is complex – you have many degrees of freedom and many of the forces involved are extremely subtle.

Imagine using your foot to do something you usually do with your hand, and you immediately understand why this would be difficult.

Last but not least – video games.

Even just considering the past few months, we’ve seen some amazing developments. AIs are now beating professional players in CS:GO and Dota 2.

So what makes this course different from the first two?

Now that we know deep learning works with reinforcement learning, the question becomes: how do we improve these algorithms?

This course is going to show you a few different ways: including the powerful A2C (Advantage Actor-Critic) algorithm, the DDPG (Deep Deterministic Policy Gradient) algorithm, and evolution strategies.

Evolution strategies is a new and fresh take on reinforcement learning, that kind of throws away all the old theory in favor of a more “black box” approach, inspired by biological evolution.

What’s also great about this new course is the variety of environments we get to look at.

First, we’re going to look at the classic Atari environments. These are important because they show that reinforcement learning agents can learn based on images alone.

Second, we’re going to look at MuJoCo, which is a physics simulator. This is the first step to building a robot that can navigate the real-world and understand physics – we first have to show it can work with simulated physics.

Finally, we’re going to look at Flappy Bird, everyone’s favorite mobile game just a few years ago.

Thanks for reading, and I’ll see you in class!

Suggested prerequisites:

  • Calculus
  • Probability
  • Object-oriented programming
  • Python coding: if/else, loops, lists, dicts, sets
  • Numpy coding: matrix and vector operations
  • Linear regression
  • Gradient descent
  • Know how to build a convolutional neural network (CNN) in TensorFlow
  • Markov Decision Proccesses (MDPs)

TIPS (for getting through the course):

  • Watch it at 2x.
  • Take handwritten notes. This will drastically increase your ability to retain the information.
  • Write down the equations. If you don’t, I guarantee it will just look like gibberish.
  • Ask lots of questions on the discussion board. The more the better!
  • Realize that most exercises will take you days or weeks to complete.
  • Write code yourself, don’t just sit there and look at my code.

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

  • Check out the lecture “What order should I take your courses in?” (available in the Appendix of any of my courses, including the free Numpy course)

Who this course is for:

  • Students and professionals who want to apply Reinforcement Learning to their work and projects
  • Anyone who wants to learn cutting-edge Artificial Intelligence and Reinforcement Learning algorithms

Created By:
Last Updated  On:
Language:
Size: 

Lazy Programmer Inc
12/2019
English
3.30 GB

Leave A Reply

Your email address will not be published.